Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.009 \text{ Å}$ R factor = 0.022 wR factor = 0.030Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[mercury(II)-di- μ -chloro- μ -pyridazine- $\kappa^2 N$:N']

The crystal structure of $[HgCl_2(Pyo)]_n$ (Pyo = pyridazine, $C_4H_4N_2$) consists of chloride-bridged strands of octahedrally coordinated mercuric centers, connected by the two neighboring N atoms of pyridazine molecules. All atoms lie in special positions: Hg with site symmetry 2/m and the others on mirror planes.

Received 29 March 2004 Accepted 29 April 2004 Online 8 May 2004

Comment

N-Donor ligands generate a wide variety of coordination compounds with mercury (*e.g.* Grdenić, 1965; Breitinger & Brodersen, 1970). We have carried out a systematic study of the affinity of mercury towards *N*-donor ligands (Nockemann, 2002; Meyer & Nockemann, 2003).

The crystal structure of $[HgCl_2(Pyo)]_n$ (Pyo = pyridazine), (I), consists of strands of octahedrally coordinated mercuric

Figure 1 Packing diagram of $[HgCl_2(Pyo)]_n$, viewed approximately down the b axis.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 2 View of a part of the [HgCl₂(Pyo)]_n coordination polymer, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

centers symmetrically bridged by chloride, with four equal Hg-Cl distances of 2.6819 (16) Å. Neighboring mercuric centers are connected by the two adjacent N atoms of pyridazine molecules, with two Hg-N distances of 2.411 (5) Å. This is the shortest Hg-N bond observed in diazine adducts of mercuric chloride and results from the high basicity of pyridazine (Meyer & Nockemann, 2003). The Cl-Hg-Cl angle within the Hg₂Cl₂ rings in the strands in the [010] direction is 82.80 (8)°.

The Hg atom has 2/m site symmetry and all other atoms lie on mirror planes.

Experimental

Crystals of $[HgCl_2(Pyo)]_n$ were obtained by adding a solution of 1 g (12.5 mmol) pyridazine in 20 ml methanol dropwise and slowly to 10 ml of a 0.1 N aqueous solution of mercury(II) chloride without stirring. This solution was allowed to stand for 7 d, during which colorless prismatic crystals appeared.

Crystal data

[HgCl2(C4H4N2)]	Mo $K\alpha$ radiation	
$M_r = 351.58$	Cell parameters from 2760	
Orthorhombic, Imma	reflections	
a = 7.458 (2) Å	$\theta = 3.1 - 27.0^{\circ}$	
b = 7.1667 (16) Å	$\mu = 22.59 \text{ mm}^{-1}$	
c = 13.136 (4) Å	T = 293 (2) K	
$V = 702.1 (3) \text{ Å}^3$	Prism, colorless	
Z=4	$0.3 \times 0.2 \times 0.1 \text{ mm}$	
$D_x = 3.326 \text{ Mg m}^{-3}$		

Data collection

Duiu concenon	
Stoe IPDS-I diffractometer	296 reflections with $I > 2\sigma(I)$
φ scans	$R_{\rm int} = 0.046$
Absorption correction: numerical	$\theta_{ m max} = 27.0^{\circ}$
(X-SHAPE; Stoe & Cie, 1998)	$h = -9 \rightarrow 9$
$T_{\min} = 0.249, T_{\max} = 0.617$	$k = -9 \rightarrow 8$
2760 measured reflections	$l = -16 \rightarrow 16$
448 independent reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.030$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0107P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\text{max}} < 0.001$
448 reflections	$\Delta\rho_{\text{max}} = 0.37 \text{ e Å}^{-3}$
29 parameters	$\Delta\rho_{\text{min}} = -0.60 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

ε	1 ,	,	
Hg-N	2.411 (5)	$N-N^{i}$	1.334 (9)
Hg-Cl	2.6819 (16)	C1-C2	1.391 (9)
N-C1	1.316 (8)	C2-C2 ⁱ	1.359 (14)
$N-Hg-N^{ii}$	180	$C1-N-N^i$	119.5 (3)
N-Hg-Cl	89.43 (9)	C1-N-Hg	122.7 (4)
Cl ⁱⁱ -Hg-Cl	180	$N^{i}-N-Hg$	117.81 (11)
N-Hg-Cl ⁱⁱⁱ	90.57 (9)	N-C1-C2	123.4 (6)
Cl-Hg-Cli	82.80 (8)		

Symmetry codes: (i) $-x, \frac{3}{2} - y, z$; (ii) -x, 1 - y, -z; (iii) $x, y - \frac{1}{2}, -z$.

The highest peak and deepest hole were located 1.85 Å from H2 and 1.80 Å from Cl1, respectively. H atoms were visible in a difference map and were treated as riding atoms, with a C-H distance of 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-STEP32 (Stoe & Cie, 2000); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn Germany

Breitinger, D. & Brodersen, K. (1970). Angew. Chem. Int. Ed. Engl. 9, 357-367. Grdenić, D. (1965). Quart. Rev. 19, 303-327.

Meyer, G. & Nockemann, P. (2003). Z. Anorg. Allg. Chem. 629, 1447–1461. Nockemann, P. (2002). Dissertation, Universität zu Köln, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2000). X-STEP32. Version 1.06f. Stoe & Cie, Darmstadt,

Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED32 (Version 1.22). Stoe & Cie, Darmstadt, Germany.