Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln,
Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.022$
$w R$ factor $=0.030$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[mercury(II)-di- μ-chloro- μ pyridazine $\left.-\kappa^{2} N: N^{\prime}\right]$

The crystal structure of $\left[\mathrm{HgCl}_{2}(\mathrm{Pyo})\right]_{n}$ (Pyo $=$ pyridazine, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$) consists of chloride-bridged strands of octahedrally coordinated mercuric centers, connected by the two neighboring N atoms of pyridazine molecules. All atoms lie in special positions: Hg with site symmetry $2 / m$ and the others on mirror planes.

Comment

N-Donor ligands generate a wide variety of coordination compounds with mercury (e.g. Grdenić, 1965; Breitinger \& Brodersen, 1970). We have carried out a systematic study of the affinity of mercury towards N-donor ligands (Nockemann, 2002; Meyer \& Nockemann, 2003).

(I)

The crystal structure of $\left[\mathrm{HgCl}_{2}(\mathrm{Pyo})\right]_{n}(\mathrm{Pyo}=$ pyridazine $)$, (I), consists of strands of octahedrally coordinated mercuric

Figure 1

Packing diagram of $\left[\mathrm{HgCl}_{2}(\mathrm{Pyo})\right]_{n}$, viewed approximately down the b axis.

Figure 2

View of a part of the $\left[\mathrm{HgCl}_{2} \text { (Pyo) }\right]_{n}$ coordination polymer, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
centers symmetrically bridged by chloride, with four equal $\mathrm{Hg}-\mathrm{Cl}$ distances of 2.6819 (16) \AA. Neighboring mercuric centers are connected by the two adjacent N atoms of pyridazine molecules, with two $\mathrm{Hg}-\mathrm{N}$ distances of 2.411 (5) \AA. This is the shortest $\mathrm{Hg}-\mathrm{N}$ bond observed in diazine adducts of mercuric chloride and results from the high basicity of pyridazine (Meyer \& Nockemann, 2003). The $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ angle within the $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ rings in the strands in the [010] direction is $82.80(8)^{\circ}$.

The Hg atom has $2 / m$ site symmetry and all other atoms lie on mirror planes.

Experimental

Crystals of $\left[\mathrm{HgCl}_{2}(\mathrm{Pyo})\right]_{n}$ were obtained by adding a solution of 1 g (12.5 mmol) pyridazine in 20 ml methanol dropwise and slowly to 10 ml of a 0.1 N aqueous solution of mercury(II) chloride without stirring. This solution was allowed to stand for 7 d , during which colorless prismatic crystals appeared.

Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$
$M_{r}=351.58$
Orthorhombic, Imma
$a=7.458(2) \AA$
$b=7.1667$ (16) \AA
$c=13.136$ (4) A
$V=702.1(3) \AA^{3}$
$Z=4$
$D_{x}=3.326 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-I diffractometer φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.249, T_{\text {max }}=0.617$
2760 measured reflections
448 independent reflections

Mo $K \alpha$ radiation

Cell parameters from 2760 reflections
$\theta=3.1-27.0^{\circ}$
$\mu=22.59 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

$$
\begin{aligned}
& 296 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.046 \\
& \theta_{\max }=27.0^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-9 \rightarrow 8 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0107 P)^{2}\right]$
$w R\left(F^{2}\right)=0.030$
$S=0.97$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
448 reflections
29 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{2} \AA_{\text {min }}=-0.60 \mathrm{e}^{-3}$
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Hg}-\mathrm{N}$	$2.411(5)$	$\mathrm{N}-\mathrm{N}^{\mathrm{i}}$	$1.334(9)$
$\mathrm{Hg}-\mathrm{Cl}$	$2.6819(16)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.391(9)$
$\mathrm{N}-\mathrm{C} 1$	$1.316(8)$	$\mathrm{C} 2-\mathrm{C}^{\mathrm{i}}$	$1.359(14)$
$\mathrm{N}-\mathrm{Hg}-\mathrm{N}^{\mathrm{ii}}$	180	$\mathrm{C} 1-\mathrm{N}-\mathrm{N}^{\mathrm{i}}$	$119.5(3)$
$\mathrm{N}-\mathrm{Hg}-\mathrm{Cl}$	$89.43(9)$	$\mathrm{C} 1-\mathrm{N}-\mathrm{Hg}$	$122.7(4)$
$\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$	180	$\mathrm{Ni}-\mathrm{N}-\mathrm{Hg}$	$117.81(11)$
$\mathrm{N}-\mathrm{Hg}-\mathrm{Cl}^{\mathrm{iii}}$	$90.57(9)$	$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	$123.4(6)$
$\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}^{\mathrm{i}}$	$82.80(8)$		
Symmetry codes: (i) $-x, \frac{3}{2}-y, z \cdot\left(\right.$ (ii) $-x, 1-y,-z$ (iii) $x, y-\frac{1}{2}-z$			

The highest peak and deepest hole were located $1.85 \AA$ from H2 and $1.80 \AA$ from Cl1, respectively. H atoms were visible in a difference map and were treated as riding atoms, with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-STEP32 (Stoe \& Cie, 2000); data reduction: X-RED32 (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Breitinger, D. \& Brodersen, K. (1970). Angew. Chem. Int. Ed. Engl. 9, 357-367. Grdenić, D. (1965). Quart. Rev. 19, 303-327.
Meyer, G. \& Nockemann, P. (2003). Z. Anorg. Allg. Chem. 629, 1447-1461.
Nockemann, P. (2002). Dissertation, Universität zu Köln, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2000). X-STEP32. Version 1.06f. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-AREA (Version 1.15) and X-RED32 (Version 1.22). Stoe \& Cie, Darmstadt, Germany.

